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ABSTRACT: The scope of the present work is the appli-
cation of a particular class of strain energy function,
based on the logarithmic strain, for the prediction of the
twisting moment and axial force of a rubber circular cyl-
inder under combined extension and torsion. The strain
energy function involves four material parameters three
of which are determined by fitting published experimen-
tal data from simple tensile and compression tests of nat-
ural rubber. One of the parameters of the proposed
model has physical meaning, and it is equal to one ninth
of the initial modulus of elasticity of the material. Hence,
the number of unknown parameters is reduced to three.
The logarithmic strain energy function is then applied to

a combined extension and torsion problem of a rubber
circular cylinder to check its performance for more com-
plicated deformations. The results are compared with
corresponding experimental and theoretical solutions
available in the literature to validate the proposed model.
It is found that the proposed strain energy function apart
from predicting the common modes of deformations is
also capable to determine more complicated types of de-
formation. VVC 2008 Wiley Periodicals, Inc. J Appl Polym Sci 110:
1028–1033, 2008
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INTRODUCTION

The hyperelastic behavior of the rubber materials
can be described using a special form of equation
known as strain energy function from which the
stress–strain law can be derived. For the designation
of an appropriate strain energy function, for this
kind of materials, phenomenological or macromolec-
ular models may be developed. An extended review
of these techniques is provided in a review article.1

Several types of strain energy functions for rubber
materials have been proposed in the past.2–6

Using phenomenological approaches, special
forms of strain energy function have been developed
based on the logarithmic strain approach. These
energy functions lead to accurate estimations of the
observed state of deformation-dependent behavior
while their advantages on the study of large defor-

mations are recognized.7,8 The implementation of
the logarithmic strain method in finite elements
codes is complicated, which explains its relatively
rare use in the literature, however a technique to be
implemented has been recently proposed.9

Anand10,11 has proposed the Hencky’s elasticity for
solving hyperelastic problems. A practical way of
exploiting the attractive properties of the logarithmic
strain, which is used in the constitutive equations
for the mechanical behavior of rubber like solids has
been illustrated.12–14 Diani and Gilormini15 have
combined the logarithmic strain and the full network
model for a better understanding of the hyperelastic
behavior of elastomers. Suitably defined invariants
of the logarithmic strain have shown that are more
adequate than the usual invariants of the left
Cauchy-Green tensor to define the type of the consti-
tutive equation of hyperelastic solids. Coupling these
invariants with the macromolecular full network
model, clarified some features of the state of strain
dependence of these materials.16 Plesek and
Kruisova17 have also studied the Hencky’s elasticity
model based on the logarithmic strain tensor.
Lately, a new strain energy function based on the

logarithmic strain approach has been published,7
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which involves two unknown material parameters.
This strain energy function is based on the strain
invariants of the logarithmic strain and not on the
invariants of the right and/or left Cauchy-Green
strain tensors. In addition, the specific strain energy
function has the advantage that the stress tensor
includes also the logarithmic strain, whereas in some
other forms8 the logarithmic natural of the strain dis-
appears after differentiation of the strain energy
function for the evaluation of the stress tensor. The
validity of the strain energy function based on the
logarithmic strain approach was tested for various
modes of deformation7 such as simple tension, equi-
biaxial tension, and pure shear. As a further test of
its good performance, it is clearly desirable to exam-
ine its consequences for other configurations in the
light of what limited experimental data are
available.

The purpose of this article is to investigate the
predictions of an extended form of the logarithmic
strain energy function, proposed in the aforemen-
tioned work7 for some nonhomogeneous deforma-
tions. In the previous work,7 the exponent of the
second invariant of logarithmic strain was fixed, but
here this exponent is used as an unknown parameter
that must be determined by fitting. It is well known
that the energy functions constructed on the basis of
one-dimensional tests (such as simple tension) can
often be unreliable in predicting data in other tests.
Therefore, the proposed equation is used by utilizing
the material parameters, which is derived by fitting
both simple tension and compression (equivalent
with equibiaxial deformation) experimental pub-
lished data.5 Firstly, the appropriate theory for the
stress field, describing simple tension and compres-
sion is developed to evaluate the material parame-
ters, which are incorporated in the proposed strain
energy function. The theory is then extended for the
prediction of twisting moment and axial force of a
rubber cylinder under combined extension and tor-
sion by using the estimated parameters. Analytical
forms for the twist and axial force are derived and
solved analytically by using a professional math-
code.18

LOGARITHMIC STRAIN ENERGY APPROACH
FOR HYPERELASTIC SOLIDS

Logarithmic strain energy function

The Hencky’s strain measure19 taken as the loga-
rithm of the extension ratio has well documented
advantages, such as additivity of progressive elonga-
tion increments. Truesdell and Toupin6 have dis-
cussed the history of the various logarithms
measures and comment that, in effect, using an ana-
lytical continuation of the series for logarithms

results in off-diagonal terms involving infinite series.
An additively symmetrical measure of strain must
satisfy the relation e(1/k) ¼ �e(k), where k repre-
sents the one-dimensional stretch ratio, that is, the
ratio of deformed to undeformed length.19 One of
the infinitely, many smooth functions that conform
to this equation is

e ¼ lnðkÞ (1)

This equation was generalized, to a proper tenso-
rial representation, for finite deformation theory.20

The polar decomposition of the deformation tensor F
yields the right Cauchy-Green stretches tensor, U,
whose principal values are defined by ki (i ¼ 1–3).
Assuming the existence of a scalar potential function
of three independent invariants of e ¼ ln(U), one
can write the three logarithmic invariants of loga-
rithmic strain:

Ie ¼
X3
i¼1

ei; Iee ¼
X3
i¼1

e2i ; Ieee ¼
X3
i¼1

e3i (2)

where ei ¼ ln(ki) (i ¼ 1–3) defines the principal val-
ues of logarithmic strain e. For hyperelastic solids a
stress measure S, can be derived from a scalar
potential function W ¼ W (Ie, Iee, Ieee):

S ¼ @W

@e
¼
X3
k¼1

@W

@Ik

@Ik
@e

(3)

where the invariants Ii (i ¼ 1–3) are: I1 ¼ Ie, I2 ¼ Iee,
I3 ¼ Ieee. One such form of the strain energy function
W, based on the logarithmic strain measure, can be
written as:

WðIee; IeeeÞ ¼ hIeee þ gIee þ kIaee (4)

where the material constants h, k, a must be deter-
mined by fitting with the available experimental
data in the literature. The parameter g is equal to the
one ninth of the modulus of elasticity E, as it was
proved earlier.7 Notice that in this work, the expo-
nent of the last term is not fixed in contrast with the
previous work,7 in which this exponent was taken
equal to 3/2.

Application of the logarithmic strain energy
function to simple tension and compression

For incompressible solids the product of the princi-
pal values ki is unity, hence the summation of the
logarithmic stretches is zero, that is, the first invari-
ant of the logarithmic strain is null, Ie ¼ 0. The prin-
cipal values of the Cauchy stress are given by21,22:
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tj ¼ kj
@W

@kj
� p ¼ @W

@ej
� p (5)

where p represents the hydrostatic pressure, which is
determined by satisfying the equilibrium and bound-
ary conditions. Substituting eq. (2) into eq. (5), yields:

ti ¼ 3he2i þ 2 gþ ak
X3
i�1

e2i

 !a�1
8<
:

9=
;ei � p (6a)

For simple tension tests the principal stretches are
defined by {k, k�1/2, k�1/2}, where k is defined along
the direction of force. The principal Cauchy stresses
are defined by {t,0,0}, the principal logarithmic
strains are (e, �e/2, �e/2), and the second and third
logarithmic strain invariants are Iee ¼ (3/2)e2, Ieee ¼
(3/4)e3. Hence, for this type of deformation eq. (6a)
can be written as:

tSTðeÞ ¼ 9geþ 27

4
he2 þ 6

3

2

� �a

ke2a� (6b)

The Cauchy stress for this mode of deformation
dependents on the material parameters h, k, a, and
not on the parameter g, because g ¼ E/9. This is due
to the fact, that eq. (6b) must satisfy the Hooke’s law
for small strains.

For simple compression tests, that is equivalent to
equibiaxial tension, the principal stretches are
defined by {k, k, k�2}, where k defines the stretch
along the loading direction, and the principal true
stresses are defined by {t, t, 0}. The principal loga-
rithmic strains are defined by {e, e�2e} and the strain
invariants are Iee ¼ 6e2, Ieee ¼ �6e3. The true stress,
from eq. (6a), can be written as:

tscðeÞ ¼ 6g e� 9h e2 þ a k6a e2a�1 (6c)

This mode of deformation is equivalent to equibiax-
ial tension tests and dependents also on the same pa-
rameters, as in the case of simple tension. In order the
theory to work well for rubber materials, the unknown
parameters must fit both types of deformation.

Application of the logarithmic strain energy
function to combined extension and torsion of a
circular cylinder

Following Ogden,23,24 the deformation in a cylindri-
cal coordinate system (r, y, z) for the extension and
torsion of a circular cylinder is defined by:

k ¼ z=Z; r ¼ R=
ffiffiffi
k

p
; h ¼ Hþ skZ (7a)

where the solid cylinder is considered incompressi-
ble, that is, is made from a rubber material, having

radius R and length L in the reference configuration.
The coordinates (R, H, Z) corresponds to the unde-
formed state, whereas the coordinates (r, y, z) refers
to the deformed system. The principal stretches ki
(i ¼ 1–3) are defined by k1 ¼ k�1/2, along the radial
direction, whereas the other principal stretches are
defined via the equations:

k22k
2
3 ¼ k; k22 þ k23 ¼ k�1 þ k2 þ ks2R2 (7b)

where s (s > 0) defines the twist (or torque) per unit
length of the deformed cylinder and R defines the
radius of the undeformed cylinder. Introducing the
further notation v (v � 1) eq. (7b) can be written as:

k2 ¼ k1=4v; k3 ¼ k1=4v�1 (8)

so that eq. (7b) becomes:

v2 þ v2 ¼ ðm2 þ 1Þm�1 þ m (9a)

or

m2 ¼ ðv2 � mÞðm� v�2Þ (9b)

where

m ¼ k3=2 and m ¼ srm (9c)

The principal axis of strain in the deformed con-
figuration associated with the greatest stretch has
direction cosines (0, cosw, sinw) relative to (r, y, z)
directions where:

sinð2wÞ ¼ 2m

v2 � v�2
;

cosð2wÞ ¼ ðv2 þ v�2 � 2mÞ
v2 � v�2

8 0 � w � p
4

� � (10)

The torsional couple is defined by:

M ¼
ZR
0

rzh2prRdR (11)

where R defines the radius of the solid circular
cylinder.
The shear stress rzy is defined by:

rzh ¼
1

2
ðt2 � t3Þsinð2wÞ (12a)

where ta (a ¼ 1–3) are the principal Cauchy stresses
defined in eq. (6a). Using eq. (6a), the principal
stresses ti (i ¼ 2,3), are replaced into eq. (12a) and
the stress components rzy become:
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rzh ¼
(
3h lnðkÞ:c

þ 2 gþ ak
3

8
ln2ðkÞ þ 2 ln2ðvÞ

� �a�1
 !)

m lnðvÞ
v2 � v�2

(12b)

By substituting eq. (12a) into eq. (12b) we obtain

Mðk; h; g; k; a; sÞ ¼ 2ps�3m�2

�
ZvR
m1=2

3h lnðkÞ þ 2 gþ ak
3

8
ln2ðkÞ þ 2 ln2ðvÞ

� �a�1
 )(

� ðv2 þ v�2 � 2ÞlnðvÞ
v

dv ð12cÞ

For simple torsion (k ¼ 1), eq. (12c) is reduced to
the following expression:

M ¼ ps�3

4gðn sin hn� cos hn� n2

2
Þ
����
nu

nl

þ 21�aak
Znu
nl

n2a�1ðcos hn� 1Þdn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(13a)

where the lower and upper limits of integration are:

nl ¼
3

2
lnðkÞ ¼ 0 (13b)

and

n11 ¼ 2 ln
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsRÞ2 þ 4

q
þ sR

� �� �
(13c)

For k ¼ 0 eq. (13a) leads to Anand’s solution10,11

for torsional couple. The axial force N, can be writ-
ten as23:

N ¼ p
ZR= ffiffikp

0

fðtrr � thhÞ þ 2ðtzz � trrÞgrdr (14)

where

trr � thh ¼
@W

@e1
� 1

2

@W

@e2
þ @W

@e3

� �

� 1

2

@W

@e2
� @W

@e3

� �
cos 2w ð15Þ

and the derivatives of the strain energy function
W(e1, e2, e3) are given via eq. (6a) and

cosð2wÞ ¼ v2 þ v�2 � 2m
v2 � v�2

(16)

Substituting the derivatives of W and the cos(2w)
into eq. (15) yields:

trr � thh ¼ �3h ln2ðvÞ

� 2

��
gþ ak2a�1 ln2a�2ðvÞ

�
lnðvÞ

�
v2 þ v�2 � 2m

v2 � v�2

� �
(17)

The second term in eq. (14) is determined by:

tzz � trr ¼ � @W

@e1
þ 1

2

@W

@e2
þ @W

@e3

� �

� 1

2

@W

@e2
� @W

@e3

� �
cos 2w ð18Þ

or equivalently

tzz � trr ¼ 3h ln2ðvÞ � 2

��
gþ ak2a�1 ln2a�2ðvÞ

�
lnðvÞ

�
v2 þ v�2 � 2m

v2 � v�2

� �
ð19Þ

Substituting eqs. (17) and (18) into eq. (14) yields:

N ¼ pm�1s�2

2

n
� 9

8
h ln2ðkÞchðnÞ þ 3g lnðkÞshðnÞ

þ 6h

8

Znu
nl

n2ðexpðnÞ � expð�nÞÞdn

þ 9k

8
lnðkÞ

Znu
nl

ðc22 þ 2n2Þ1=2ðexpðnÞ � expð�nÞÞdn

� 3h

4
lnðkÞ

Znu
nl

nðexpðnÞ � expð�nÞ � 2mÞdn

þ g

Znu
nl

ðc22 þ 2n2Þ1=2nðexpðnÞ � expð�nÞ � 2mÞdn
o

ð20aÞ

where c22 ¼ 3
2 ln

2ðkÞ and the lower and upper limits
of the integral were defined earlier. For simple tor-
sion experiments, k ¼ 1, eq. (20a) yields:

N ¼ 3ps�2

h

2
ðn2 þ 2Þcos hn� 2nsin hn
	 
nu

nl

� 4g n sin hn� cos hn� n2

2

� �nu

nl

� ak21�a
Z nu

nl

n2a�1ðcos hn� 1Þdn

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(20b)

where n ¼ 2 ln(v), and the upper and lower limits of
the integral were defined earlier in eqs. (13b,c). For
h ¼ 0 and k ¼ 0 eq. (20) is reduced to Anand’s
solution.10,11
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RESULTS AND DISCUSSION

Simple tension and compression

From the experimental data5 one can extract the
ground modulus of the testing rubber material equal
to E ¼ 1.1475 MPa, hence the g value is equal to
0.1275 MPa. Equations (6b) and (6c) which apply for
simple tension and compression, respectively, were
used for the prediction of Rivlin’s and Saunders5 ex-
perimental data. The values of the material parame-
ters were estimated h ¼ 0.15 MPa, k ¼ 0.003 MPa,
and a ¼ 1.84 after a fitting process the results of
which are illustrated in Figures 1 and 2 for the ten-
sile and compression loading conditions, respec-
tively. It is obvious that the proposed strain energy
function can adequately describe the tensile and

compressive behavior of the rubber for a large range
of strains up to break. The present theory is an
extension of Anand’s approach that clearly fits the
simple tension and compression data (Figs. 1, 2) for
the rubber material nicely, in contrast to Anand’s10,11

constitutive equation that fits the experiments in the
small region near k ¼ 1.

Combined extension and torsion of a solid
circular cylinder

Equations (13) and (20) are solved using a computer
math code,18 and the results that arise are presented
in Figures 3–5. A value of 12.7 mm was assigned for
the radius, R, of the rubber cylinder to make

Figure 1 Fitting of the experimental data5 with eq. (6a).

Figure 2 Fitting the experimental data5 with eq. (6c).

Figure 3 Prediction of the twisting moment with respect
to the twisting angle per unit length.

Figure 4 Prediction of the axial force with respect to the
square of the twisting angle per unit length.
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comparisons with the experimental data.5 The mate-
rial used is the same with the one used for the esti-
mation of the material parameters in the previous
section. Figure 3 presents, the variation of the twist-
ing moment with the twisting angle per unit length
for simple torsion (k ¼ 1). Figure 4 illustrates, the
behavior of the axial force with respect to the square
of twisting angle per unit length for simple torsion
too. Figure 5 depicts the torque variation, as a func-
tion of the twisting angle per unit length for various
values of stretch (k > 1, combined extension and
torsion). In all the above figures, the theoretical
Mooney/Rivlin’s2 and Anand’s10,11 solutions are
also included for comparative reasons. Because the
torsional couple, M, for simple torsion is almost lin-
ear in the range of the applied angle of twist, t, all
models follow the experimental data sufficiently.
However, in the case where the cylinder is also
under extension the proposed model is superior that
of the others. In this case, the experimental points
do not follow a linear dependence, and therefore the
Mooney/Rivlin’s as well as the Anand’s solution fail
to safely predict the experimental evidence. The pro-
posed theory approaches the experimental points
better than the other solutions published in the past
and seems to permit the safe prediction of hypere-
lastic behavior of rubber for complicated twisting
problems.

CONCLUSIONS

The logarithmic strain energy approach proposed in
a previous work7 has been extended to deal with the

problems of rubber like materials under combined
extension and torsion and therefore to prove its
good performance for more complicated states of de-
formation. One more parameter has been used in
this work to offer enhanced predictions for larger
values of strain. Three of the material parameters k,
h, and a have been determined by fitting corre-
sponding simple tension and compression experi-
mental data whereas the parameter g has been taken
equal to E/9. Using the parameters arisen from the
fitting process the equations describing the twisting
moment and axial force have been defined and after-
wards evaluated analytically using a common math
code. The results illustrated good agreement with
other experimental and theoretical solutions avail-
able in the literature. The computation of stresses
inside the rubber material under combined torsion
and extension using the proposed strain energy
function in conjunction with the finite element
method could be implemented in a future work.
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